Tuesday, January 26, 2021

PENGERTIAN TURUNAN & SIFAT-SIFATNYA + CONTOH SOAL

 Hana Fahira (15) XI IPS 2

      Pada pembahasan materi matematika kelas XI kali ini, kita akan mempelajari mengenai turunan. Mari simak materi berikut.


                                            Apa itu Turunan?                          



    Turunan adalah suatu perhitungan terhadap perubahan nilai fungsi karena perubahan nilai input (variabel). Turunan dapat disebut juga sebagai diferensial dan proses dalam menentukan turunan suatu fungsi disebut sebagai diferensiasi.

    Misal fungsi f memetakan x ke y atau y=f(x), x sebagai variabel bebas dan y sebagai variabel terikat. turunan  y=f(x) terhadap x adalah:


                                    Sifat-sifat Turunan                          



1. Jika f(x)=c dimana c adalah konstanta, maka turunannya adalahf'(x)=0

Contoh:\begin{aligned} f(x)&=2 &\rightarrow f'(x)=0\\ f(x)&=13 &\rightarrow f'(x)=0\\ f(x)&=100 &\rightarrow f'(x)=0 \end{aligned}


2. Jika f(x)=cx, maka turunannya adalahf'(x)=c
Contoh:\begin{aligned} f(x)&=2x &\rightarrow &f'(x)=2\\ f(x)&=13x &\rightarrow &f'(x)=13\\ f(x)&=100x &\rightarrow &f'(x)=100 \end{aligned}
3. Jika f(x)=x^n maka turunannya adalahf'(x)=nx^{n-1}
Contoh:\begin{aligned} f(x)&=x^4 &\rightarrow &f'(x)=4x^3\\ f(x)&=x^3 &\rightarrow &f'(x)=3x^2\\ f(x)&=x^2 &\rightarrow &f'(x)=2x \end{aligned}
4. Jika f(x)=cx^nmaka turunannya adalahf'(x)=cnx^{n-1}
Contoh:\begin{aligned} f(x)&=2x^4 &\rightarrow &f'(x)=8x^3\\ f(x)&=13x^3 &\rightarrow &f'(x)=39x^2\\ f(x)&=100x^2 &\rightarrow &f'(x)=200x \end{aligned}
5. Jika f(x)=c\,u(x) maka turunannya adalahf'(x)=c\,u'(x)
Contoh:\begin{aligned} f(x)&=4\ln{x}&\rightarrow &f'(x)=4\frac{1}{x}\\ f(x)&=3\cos{x}&\rightarrow &f'(x)=3\sin{x}\\ f(x)&=2\sin{x}&\rightarrow &f'(x)=-2\cos{x} \end{aligned}
6. Jika f(x)=u(x)\pm v(x) maka turunannya adalahf'(x)=u'(x)\pm v'(x)
Contoh:\begin{aligned} f(x)&=2x+x^2&\rightarrow &f'(x)=2+2x\\ f(x)&=x^4-x^3&\rightarrow &f'(x)=4x^3-3x^2\\ f(x)&=\sin{x}+\cos{x}&\rightarrow &f'(x)=\cos{x}-\sin{x} \end{aligned}
7. Jika f(x)=u(x)v(x) maka turunannya adalahf'(x)=u'(x)v(x)+u(x)v'(x)
Contoh:f(x)=x^4x^3Misalkan u(x)=x^4 dan v(x)=x^3, maka u'(x)=4x^3 dan v'(x)=3x^2, sehingga\begin{aligned} f'(x)&=(4x^3)(x^3)+(x^4)(3x^2)\\ &=4x^6+3x^6\\ &=7x^6 \end{aligned}
8. Jika f(x)=\displaystyle\frac{u(x)}{v(x)} maka turunannya adalahf'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2}
Contoh:f(x)=\frac{x^4}{x^3}Misalkan u(x)=x^4 dan v(x)=x^3, maka u'(x)=4x^3 dan v'(x)=3x^2, sehingga\begin{aligned} f'(x)&=\frac{(4x^3)(x^3)-(x^4)(3x^2)}{(x^3)^2}\\ &=\frac{4x^6-3x^6}{x^6}\\ &=1 \end{aligned}
9. Jika f(x)={u(x)}^n maka turunannya adalahf'(x)=n(u(x))^{n-1}u'(x)
Contoh:f(x)=(2x+x^2)^4Misalkan u(x)=2x+x^2, sehingga u'(x)=2+2x, makaf'(x)=4\left(2x+x^2\right)^3(2+2x)

                                   CONTOH SOAL Turunan                          



    Sekian materi mengenai pengertian turunan, sifat-sifatnya, serta contoh soalnya. Semoga dapat bermanfaat.

Buku PKS matematika wajib kelas XI SMA/MA, Gematama, Bab 7, halaman 253 
https://www.rumusstatistik.com/2018/07/sifat-sifat-turunan.html

No comments:

Post a Comment